Lecture 6: Labour Economics and Wage-Setting Theory

Spring 2017

Lars Calmfors

Literature: Soskice-Iversen

Topics

- Wages and the degree of coordination: The Calmfors-Driffill hump-shape hypothesis
- Interaction between large trade unions and the central bank: wage setting and monetary policy

Different degrees of co-ordination

Employment is determined by the product real wage w_p

$$w_p = \frac{W}{P}$$

W = Nominal wage

P = Output price

$$\therefore L = L(w_p),$$

where *L* = Employment

The union maximises expected utility for a representitive member:

$$U=\frac{L}{M}w_c+(1-\frac{L}{M})b,$$

where *M* = number of union members

$$w_c = \frac{W}{P_c}$$
 = Consumption real wage

 $P_c = CPI$

b = Real unemployment benefit

Maximisation of the union utility function

We assume a monopoly union:

Max
$$U = \frac{L}{M} w_c + (1 - \frac{L}{M})b$$

w_c
given:
 $L = L (w_p)$
 $w_p = \frac{W}{P_c} \cdot \frac{P_c}{P} = \frac{W}{P_c} / \frac{P}{P_c} = \frac{w_c}{\tilde{p}}$,
where $\tilde{p} = \frac{P}{P_c}$ = The relative output price in the bargaining area
FOC:

$$1 + \frac{\partial L}{\partial w_p} \cdot \frac{w_p}{L} \left[1 - \frac{\partial \tilde{p}}{\partial w_c} \cdot \frac{w_c}{\tilde{p}}\right] \left[1 - \frac{b}{w_c}\right] = 0$$

 $-\frac{\partial L}{\partial w_p} \cdot \frac{w_p}{L} = \varepsilon$ = The elasticity of employment w.r.t. the product real wage

 $\frac{\partial \tilde{p}}{\partial w_c} \cdot \frac{w_c}{\tilde{p}} = \eta$ = The elasticity of the relative output price w.r.t. the consumption

real wage

$$1 - \varepsilon \left[1 - \eta\right] \left[1 - \frac{b}{w_c}\right] = 0$$

$$w_c = \frac{\varepsilon (1 - \eta)}{\varepsilon (1 - \eta) - 1} b$$

Effects of different degrees of co-ordination

$$w_c = \frac{\varepsilon (1 - \eta)}{\varepsilon (1 - \eta) - 1} b$$

1. Firm-level wage setting

With perfect competition in the goods market and homogeneous goods, the wage in the firm does not affect the relative output price \tilde{p} .

$$\eta = 0 \Rightarrow w_c = \frac{\varepsilon}{\varepsilon - 1} b$$

2. Complete national co-ordination (same wage in all firms) in a closed economy

The wage cannot affect the relative output price in a representative firm (since all wages are the same).

$$\eta = 0 \Rightarrow w_c = \frac{\varepsilon}{\varepsilon - 1} b$$

<u>3. Industry-level wage setting (the same wage for all firms in an industry)</u>

$$\eta > 0 \Rightarrow w_c = \frac{\varepsilon(1-\eta)}{\varepsilon(1-\eta)-1} \, b = \frac{1}{1-1/\varepsilon(1-\eta)} \, b > \frac{\varepsilon}{\varepsilon-1} \, b = \frac{1}{1-1/\varepsilon} \, b$$

4. Small open economy

If domestic and foreign goods are perfect substitutes:

 $\eta = 0 \Rightarrow w_c = \frac{\varepsilon}{\varepsilon - 1} b$ for all degrees of co-ordination.

If domestic and foreign goods are imperfect substitutes, we have also with complete co-ordination:

$$\eta > 0 \Rightarrow w_c = \frac{\varepsilon(1-\eta)}{\varepsilon(1-\eta)-1} b > \frac{\varepsilon}{\varepsilon-1} b$$

Conclusions on co-ordination and real wages

- Calmfors-Driffill-hypothesis: wage moderation with both firm-level bargaining and complete co-ordination
 - competitive pressures with firm-level bargaining
 - internalisation of externalities (price increases for others) with coordination
- Highest real wage with industry-level bargaining because a given increase in the consumption real wage can be achieved with a smaller increase in the product real wage (and thus with a smaller employment loss)
- Stylised model of a closed economy gives the same real wage with firmlevel bargaining and complete co-ordination
- Stylised model of an open economy gives the same real wage for all bargaining levels (perfect competition - perfect substitutes)
- If domestic and foreign goods are imperfect substitutes, then firm-level bargaining gives a lower wage than complete co-ordination
- Smaller "hump" the more open the economy is.

<u>The degree of co-ordination and the real wage in a closed economy (the</u> <u>Calmfors-Driffill curve)</u>

The degree of co-ordination and the real wage in an open economy

An extended model

- More externalities can be internalised with co-ordination
 - costs for unemployment benefits paid by taxes on labour
 - lower tax base implying that taxes must be raised to pay for government expenditure
 - higher employment in a sector means fewer employment opportunities for those who lose their jobs in another sector
- Internalisation of other externalities probably imply that complete national co-ordination gives more wage moderation than firm-level bargaining

The degree of co-ordination and the real wage in reality

Table 3.3

Unemployment rates under various bargaining regimes (ceteris-paribus differences to decentralised systems) in various studies^{a)}

A: Studies finding a	a hump-shaj	ped relationship) between ba	rgaining	co-ordination and	l unemployment
----------------------	-------------	------------------	--------------	----------	-------------------	----------------

	Study	Intermediate	High co-ordination	Measure of bargaining structure ^{b)}
	-	co-ordination	_	
1	Zetterberg (1995) ^{c)}	2.6	- 1.5	Centralisation
2	Bleaney (1996) ^{d)}	3.5	- 2.1	Centralisation/
				co-ordination
3	Scarpetta (1996) ^{e)}	0.9	- 12.0	Centralisation
4	Elmeskov et al. (1998) ⁰	1.3	- 2.4	Centralisation
5	Elmeskov et al. (1998) ^{g)}	1.2	- 4.4	Centralisation/
				co-ordination
6	Elmeskov et al. (1998) ^{h)}	6.9	- 4.6	Co-ordination
7	Cukierman & Lippi (1999) ⁱ⁾	5.8	3.2	Centralisation
8	Daveri & Tabellini (2000) ⁰	5.8	- 7.2	Geographical ^{k)}
9	Nicoletti et al. (2001) ¹⁾	3.6	- 2.2	Centralisation/
				co-ordination
	Average	3.5	- 3.9	

B: Studies finding a monotonic relationship between bargaining co-ordination and unemployment

	Study	Intermediate co-ordination	High co- ordination	Measure of bargaining structure ^{b)}
1	Layard et al. (1991)	- 4.7	- 10.4	Co-ordination
2	Zetterberg (1995) ^{m)}	- 0.4	- 2.4	Centralisation
3	Scarpetta (1996) ⁿ⁾	- 6.2	- 12.3	Co-ordination
4	Bleaney (1996) ^{o)}	- 2.0	- 3.9	Co-ordination
5	Elmeskov et al. (1998)p)	- 0.8	- 5.7	Co-ordination
6	Hall & Franzese (1998) ⁹⁾	- 2.6	- 5.1	Co-ordination
7	Iversen (1998) ^{r)}	- 3.3	- 4.1	Centralisation
8	Nickell & Layard (1999) ^{s)}	- 4.6	- 6.0	Co-ordination
9	Blanchard & Wolfers (2000) ¹⁾	- 4.4	- 8.9	Centralisation
10	Belot & van Ours (2001) ^{a)}	- 2.6 (0)	- 5.2 (0)	Co-ordination
11	Belot & van Ours (2001) ^{v)}	- 1.9	- 1.9	Co-ordination
12	Nickell et al. (2003) ^{x)}	- 7.2	- 14.4	Co-ordination
	Average	- 3.4	- 6.7	

Co-ordinated wage bargaining and monetary policy

- In many European countries wage bargaining is highly co-ordinated
 - sectoral bargaining
 - nation-wide bargaining
- Internalisation of the effects of wage setting
- Interaction with monetary policy
- A conservative central bank aiming for price stability can act as a deterrent to wage increases and promote employment
- Neutrality of money but non-neutrality of the monetary regime.

Soskice-Iversen model

- N identical sectors
- Bertrand competition within each sector so that P = MC
- *n* workers in each sector; all are union members
- No labour mobility
- Monopoly unions
- Nash equilibrium
- CRS w.r.t. labour
- One union in each sector

(1) The central bank commits to a monetary policy rule of leaning against the wind

 $M = P^{\alpha} \qquad 0 \leq \alpha \leq 1$

A price rise causes a reduction in real money supply M/P if $\alpha < 1$.

- (2) Unions set wages <u>simultaneously</u> and <u>independently</u> taking all other <u>nominal</u> wages as given (Nash equilibrium).
- (3) Producers decide employment E_i and price P_i <u>simultaneously</u> and <u>independently</u> (Nash equilibrium).
- (4) The central bank sets *M* contingent on *P* according to its policy rule.

Solve model by backward induction

Stage 4

$$M = P^{\alpha}$$

Stage 3

Bertrand competition: $P_i = W_i$

Stage 2

Union utility function:

$$U_{i} = w_{i}E_{i} - (d/\beta)E_{i}^{\beta} + m/N$$

$$w_{i} = \frac{W_{i}}{P} = \text{real consumption wage}$$

$$m = \frac{M}{P} = \text{real money supply}$$

$$E_{i} = \text{hours worked}$$

$$P = \left[\frac{1}{N} \sum_{N} P_{i}^{1-\eta}\right]^{\frac{1}{1-\eta}} = \text{ price index}$$

Derivation of union utility function

Direct utility function of consumer *s* in sector *i*:

$$U_{is} = \left(\frac{C_{is}}{g}\right)^{g} \left(\frac{M_{is}/P}{1-g}\right)^{1-g} - \frac{d'}{\beta} \left(\frac{E_{i}}{n}\right)^{\beta}$$
(A1)

$$C_{_{is}} = N^{^{1/(1-\eta)}} \left[\sum_{_{j}}^{^{N}} C_{_{jis}}^{^{(\eta-1)/\eta}}\right]^{^{^{\eta/(\eta-1)}}}$$

Budget constraint

$$\sum_{j}^{N} P_{j} C_{jis} + M_{is} = W_{i} \frac{E_{i}}{n} + \overline{M}_{is} = I_{is}$$

Optimisation on the part of the consumers

$$egin{aligned} C_{_{jis}} &= \left(rac{P_{_j}}{P}
ight)^{^{-\eta}} \cdot rac{g}{N} \cdot rac{I_{_{is}}}{P} \ P &= \left[rac{1}{N} {\sum_i} P_i^{^{1-\eta}}
ight]^{rac{1}{1-\eta}} \end{aligned}$$

$$\frac{C_{is}}{g} = \frac{M_{is}/P}{1-g} = \frac{I_{is}}{P}$$
(A2)

Substitute (A2) into (A1)

$$U_{is} = \left(\frac{I_{is}}{P}\right)^{g} \left(\frac{I_{is}}{P}\right)^{1-g} - \frac{d'}{\beta} \left(\frac{E_{i}}{n}\right)^{\beta}$$

$$U_{is} = \left(\frac{I_{is}}{P}\right) - \frac{d'}{\beta} \left(\frac{E_i}{n}\right)^{\beta} = \frac{w_i E_i}{n} + \frac{\overline{M}_{is}}{P} - \frac{d'}{\beta} \left(\frac{E_i}{\beta}\right)^{\beta}$$

Multiply by *n* and use that $M = \overline{M} = nN\overline{M}_{is}$

Define $d = d ! n^{\beta-1}$

Hence $U_i = w_i E_i + m/N - \frac{d}{\beta} E_i^{\beta}$

Goods demand

$$C_{jis} = \left(\frac{P_{j}}{P}\right)^{-\eta} \cdot \frac{I_{is}}{P} \cdot \frac{g}{N} = \left(\frac{P_{j}}{P}\right)^{-\eta} \cdot \frac{g}{N} \cdot \frac{M_{is}}{P} \cdot \frac{1}{1-g}$$
$$= \left(P_{j}\right)^{-\eta} \cdot \frac{m_{is}}{N} \cdot \frac{g}{1-g}$$

Normalise g/(1-g) to unity and aggregate over all consumers:

$$C_{j} = (m/N)(p_{j})^{-\eta}$$
$$p_{j} = \frac{P_{j}}{P}$$

Trade union optimisation (continued)

Goods demand:

$$Q_{i} = (m/N)p_{i}^{-\eta}$$
$$p_{i} = \frac{P_{i}}{P}$$

<u>CRS</u>

$$p_i = w_i$$

Labour demand

$$E_{i} = Q_{i} = (m/N)w_{i}^{-\eta}$$
 (2)

$$\begin{aligned} & \underset{W_i}{\text{Max}} \quad U_i = w_i E_i - (d / \beta) E_i^\beta + m / N \\ & \text{s.t.} \quad E_i = (m / N) w_i^{-\eta} \\ & p_i = w_i \\ & m = f(w_i....) \end{aligned}$$

Use that the equilibrium is symmetric, i.e. impose $p_i = w_i = 1$ after differentiation.

 E^* = sectoral employment

$$E^* = \left[\frac{\eta - 1 - 2\partial \ell nm / \partial \ell nw_i}{d\eta - d\partial \ell nm / \partial \ell nw_i}\right]^{\frac{1}{\beta - 1}}$$
(3)

Compute $\partial \ell nm / \partial \ell nw_{i}$

Use that:

$\partial \ell nm$ _	<u> Əlnm</u> _	<u> Əlnm</u>	$\frac{\partial \ell n P}{\partial \ell n}$	$\partial \ell n P_{i}$	(A)
$\partial \ell n w_{i}$	$\partial \ell n p_i$	$\partial \ell n P$	$\partial \ell n P_i$	$\partial \ell np_{_{i}}$	(+)

Computation of $\partial \ell nm / \partial \ell nP$

$$M = P^{lpha}$$

 $rac{M}{P} = P^{lpha - 1}$
 $m = P^{lpha - 1}$
 $rac{\partial \ell n m}{\partial \ell n P} = lpha - 1$

Computation of $\partial \ell n P / \partial \ell n P_i$

$$P = \left[\frac{1}{N}\sum_{N}P_{i}^{1-\eta}\right]^{1/(1-\eta)}$$
$$\frac{dP}{dP_{i}} = \frac{1}{N} \cdot P\left[\frac{1}{N}\sum_{N}P_{i}^{1-\eta}\right]^{-1}P_{i}^{-\eta}$$

$$\frac{d\ell nP}{d\ell nP_i} = \frac{dP}{dP_i} \cdot \frac{P_i}{P} = \frac{1}{N} \cdot \frac{P_i^{1-\eta}}{\frac{1}{N}\sum_N P_i^{1-\eta}}$$

But as:

$$P = \left[\frac{1}{N}\sum_{N}P_{i}^{1-\eta}\right]^{1/(1-\eta)} \text{ we get}$$
$$\frac{1}{N}\sum_{N}P_{i}^{1-\eta} = P^{1-\eta}$$

Hence:

$$\frac{\partial \ell n P}{\partial \ell n P_i} = \frac{1}{N} \cdot \frac{P_i^{1-\eta}}{P^{1-\eta}}$$

In a symmetric equilibrium:

$$P_{i} = \overline{P} \qquad \text{for all } i$$

$$P = \left[\frac{1}{N}\sum_{N}P_{i}^{1-\eta}\right]^{\frac{1}{1-\eta}} = \left[\frac{1}{N}\cdot N\overline{P}^{1-\eta}\right]^{\frac{1}{1-\eta}} = \overline{P} = P_{i}$$

Hence:

$$\frac{\partial \ell n P}{\partial \ell n P_i} = \frac{1}{N}$$

Computation of $\partial \ell n P_i / \partial \ell n p_i$

$$\frac{\partial \ell n p_i}{\partial \ell n P_i} = \frac{\partial \ell n [P_i - P]}{\partial \ell n P_i} = \frac{\partial \ell n P_i}{\partial \ell n P_i} - \frac{\partial \ell n P}{\partial \ell n P_i} =$$
$$= 1 - \frac{1}{N} = \frac{N - 1}{N}$$

Hence:

$$\frac{\partial \ell n P_i}{\partial \ell n p_i} = \frac{N}{N-1}$$

Thus:

$$\frac{\partial \ell nm}{\partial \ell nw_{i}} = \frac{\partial \ell nm}{\partial \ell nP} \cdot \frac{\partial \ell nP}{\partial \ell nP_{i}} \cdot \frac{\partial \ell nP_{i}}{\partial \ell np_{i}} =$$
$$= (\alpha - 1) \cdot \frac{1}{N} \cdot \frac{N}{N-1} = \frac{\alpha - 1}{N-1} < 0$$
(5)

- A rise in the real consumption wage of union *i* reduces the real money supply if α < 1 (because it requires a nominal wage and a nominal price rise).
- Insert (5) into (3)!

$$E^* = \left[\frac{\eta - 1 + 2(1 - \alpha)/(N - 1)}{d\eta + d(1 - \alpha)/(N - 1)}\right]^{\frac{1}{\beta - 1}}$$
(6)

- Straightforward to show that $dE*/d\alpha < 0$
 - a more conservative central bank is associated with higher employment
 - because wage restraint is induced through fear of larger employment reduction if wages are raised

Fully accommodating central bank : $\alpha = 1$

$$E^* = \left[\frac{\eta - 1}{d\eta}\right]^{\frac{1}{\beta - 1}}$$
(6a)

• Real money supply is held constant

$$m = \frac{M}{P} = P^{\alpha - 1} = P^{0} = 1$$

- The only disincentive to a wage rise is product demand substitution
- No aggregate demand effect

Compare employment with full accommodation, E_{F}^{*} , with employment with only partial accommodation, E_{P}^{*} .

$$E_{F}^{*} = \left[\frac{\eta - 1}{d\eta}\right]^{\frac{1}{\beta - 1}}$$

$$E_{F}^{*} = \left[\frac{\eta - 1}{d\eta} + 2(1 - \alpha) / (N - 1)\right]^{\frac{1}{\beta - 1}}$$

$$E_{p} = \left[\frac{d\eta + d(1-\alpha)/(N-1)}{d\eta + d(1-\alpha)/(N-1)} \right]$$

$$E_{_{P}}^{*} > E_{_{F}}^{*}$$
 if $\frac{\eta - 1 + 2(1 - \alpha) / (N - 1)}{d\eta + d(1 - \alpha) / (N - 1)} > \frac{\eta - 1}{d\eta}$

This can be shown to hold.

The above inequality implies: $d + d\eta > 0$, which always holds.

Lower employment with <u>full accommodation</u> than with only <u>partial</u> <u>accommodation</u> if

$$\left[\frac{\eta-1}{d\eta}\right]^{\frac{1}{\beta-1}} < \left[\frac{\eta-1+2(1-\alpha)/(N-1)}{d\eta+d(1-\alpha)/(N-1)}\right]^{\frac{1}{\beta-1}}$$

$$\Leftrightarrow$$

$$(\eta - 1)d\eta + \frac{(\eta - 1)d(1 - \alpha)}{N - 1} < (\eta - 1)d\eta + \frac{2(1 - \alpha)d\eta}{N - 1}$$

$$(\eta - 1)d(1 - \alpha) < 2(1 - \alpha)d\eta$$
$$0 < d + d\eta$$

Non-neutrality of the monetary regime

- Strategic wage setting
- Money supply rule has real implications
- A large trade union takes into account that a wage rise affects both the relative wage and the aggregate demand (via real money supply)
- Aggregate demand effect presupposes that N is not too large.

Large number of unions

$$E^{*} = \left[\frac{\eta - 1 + 2(1 - \alpha)/(N - 1)}{d\eta + d(1 - \alpha)/(N - 1)}\right]^{\frac{1}{\beta - 1}}$$

$$\lim_{N\to\infty} E^* = \frac{\eta-1}{d\eta}$$

- Degree of accommodation α does not matter then.
- Same employment as with fully accommodating central bank (α=1).
- A small union perceives zero effect of its wage decision on real money supply (as if it is held constant).

Only one union (N=1)

$$U = w_{i}E_{i} - (d / \beta)E_{i}^{\beta} + m / N = w_{i}E_{i} - (d / \beta)E_{i}^{\beta} + m$$
$$w_{i} = \frac{W_{i}}{P} = 1$$
$$E_{i} = [m / N]w_{i}^{-\eta} = m = E$$

Drop subscripts:

$$U = E - (d / \beta)E^{\beta} + E = 2E - (d / \beta)E^{\beta}$$

Optimisation problem

$$\begin{aligned} \underset{E}{\operatorname{Max}} & 2E - (d / \beta) E^{\beta} \\ & 2 - (d / \beta) \cdot \beta E^{\beta-1} = 0 \\ & E_{N=1}^{*} = \left(\frac{2}{d}\right)^{\frac{1}{\beta-1}} \end{aligned}$$

- Straightforward to show that employment with N = 1 is higher than with N > 1.
- The union fully internalises the aggregate demand effects (real money supply effects) of its wage decision.
- The degree of accommodation no longer matters.

Conclusion

- Higher employment with complete centralisation.
- Degree of central bank conservativeness does not matter with complete centralisation.
- Lower employment the lower is the degree of centralisation.
- A more conservative central bank raises employment with an intermediate degree of centralisation

largest effect if
$$N = 2$$

$$d\frac{\left|\frac{\partial E^*}{\partial \alpha}\right|}{dN} < 0 \quad \text{for } N \ge 2$$

zero effect with complete decentralisation ($N \rightarrow \infty$).

• Complete centralisation and central bank conservativeness are (imperfect) substitutes when it comes to promoting wage restraint.

